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CHAPTER-4, FREQUENCY RESPONSE ANALYSIS 
 

 
 

       What is Frequency Response? 
 

Consider a system with a sinusoidal input 
 

Under steady state, the system output as well as signals at all other points in the system are sinusoidal. The 

steady state output may be written as 
 

 

The magnitude and phase relationship between the sinusoidal input and the steady state output of a 

system is termed as frequency response. In linear time‐invariant systems, the frequency response is 

independent of the amplitude and phase of the input signal. 
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Advantages of Frequency Response Analysis: 

 

The frequency response test on a system or a component is normally performed by keeping the amplitude 

A fixed and determining B and for a suitable range of frequencies. Signal  generators  and  precise 

measuring instruments are readily available for various ranges of frequencies and amplitudes. 
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 Whenever it is not possible to obtain the form of the transfer function of a system through  

analytical techniques, the necessary information to compute the transfer function can be extracted 

by performing the frequency response test on the system.

 The design and parameter adjustment of the open loop transfer function of a system for specified 

closed loop performance is carried out somewhat more easily in frequency domain than in time 

domain.

 The effect of noise disturbance and parameter variations are relatively easy to visualize and assess 

through frequency response.

 The Nyquist Stability criterion is a powerful frequency domain method of extracting the information 

regarding stability as well as relative stability of a system without the need to find roots of the 

characteristic equation.

 
 

How to obtain Steady‐State Outputs to Sinusoidal Inputs? 
 

The Laplace Transform of the output of a linear single‐input, single‐output system with transfer function 

G(s) can be expressed in terms of the input as 
 

We  know, in general that  . However, it will be shown here that, for sinusoidal steady‐state 

analysis, we shall replace s by its imaginary component   only, since in steady state, the contribution of 

the real part will disappear for a stable system. 

Consider the stable, linear system shown below. 
 

r(t) 

R(s 

c 

C(s 

Let us assume that the input signal  . 
 

Suppose that the transfer function G(s) of the system can be written as a ratio of two polynomials in s as 

 

The Laplace Transform of the output of the system is then , where R(s) is the Laplace 

Transform of the input r(t). 
 

 

Where, is the conjugate of . The inverse Laplace of the above equation yields

G(s) 
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For a stable system, a, b, c have positive real parts. Hence, as t approaches at steady state, all the terms 

in the expression for c(t) will vanish except the last two terms. Thus at steady state, the response becomes 
 

Regardless of whether there are simple or multiple poles of G(s), the contribution due to them to the 

steady state response will zero. 

Where the constant K can be evaluated as follows: 
 

s=‐jw  

s=jw  

Since  is a complex quantity, it can be written in the form , 

Where  represents the magnitude and represents the angle of . 

  

Similarly, . 

We can now write, 

 

 

 

Where =AM 

Hence, for a stable, LTI system, subjected to sinusoidal input, the amplitude of the output is given by the 

product of that of the input and , while the phase angle differs from that of the input by an amount 

 . A positive phase angle is called phase lead where as a negative phase angle is called phase 

lag. 
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Input sinusoid 

 

 

 

 

Frequency Domain parameters of prototype 2nd order systems: 

The closed loop transfer function of a prototype 2nd order system is given by 

 

 
Where   is the damping factor and is the undamped natural frequency. 

The sinusoidal transfer function of the system is obtained by substituting s=  . 

Hence, 

 

 

Where, is the normalized driving signal frequency 
 

 

 



It is seen that when  
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The Magnitude and Phase angle characteristics for normalized frequency for certain values of     are 

shown below. 
 

 

 

The frequency where M has a peak value is known as Resonant Frequency. At this frequency, slope of the 

Magnitude curve is zero. Let        be the resonant frequency and   be the normalized resonant 

frequency. Then 
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or,   (1) 

The maximum value of the magnitude, known as the Resonant Peak is given by 
 

(2) 
 

The phase angle      of   at the resonant frequency is given by 
 

From Eqn. (1) and Eqn. (2), it is seen that as  approaches zero,    approaches     and     approaches     

infinity. For 0 <   , the resonant frequency always has a value less than    and the resonant peak  

has a value greater than 1. 
 

For  >1/      , it is seen that   , slope of the magnitude curve does not become zero for any real value 

of   . For this range of , the magnitude of M decreases monotonically from M=1 at u=0 with increasing u,  

as shown in the above figure. It therefore follows that for  >1/  , there is no resonant peak and as such   

the greatest value of M equals 1. 

As is evident from the above equations, for a second order system, the resonant peak  of its frequency 

response is indicative of its damping factor    for 0 <    1/   , and the resonant frequency   of the   

frequency response is indicative of its natural frequency for a given  and hence indicative of its speed of 

response   (as   .    and of the frequency response could thus be used as 

performance indices for a second order system. 
 

For , M decreases monotonically. The frequency at which M has a value 1/ is  of  special  

significance and is called the cut‐off frequency . The signal frequencies above the cut‐off frequency are 

greatly attenuated in passing through a system. 
 

For feedback control systems, the range of frequencies over which M is equal to or greater than 1/ is 

defined as the bandwidth . Control systems being low‐pass filters (At zero frequency,  M=1),  the  

bandwidth is equal to the cut‐off frequency . 

In general, the bandwidth of a control system indicates the noise‐filtering characteristic of the system. Also, 

the bandwidth gives a measure of the transient response properties as observed below. 
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The normalized bandwidth of the second order system under consideration can be determined 

as follows: 
 

 

Solving for , we get, 
 

It can be approximated in linear form as 
 

We thus observe that the normalized bandwidth is a function of damping only. The de‐normalized 

bandwidth can be written as 
 

Correlation between Time Domain and Frequency Domain: 
 

Let us consider the step response of the second order system. The peak overshoot  of the step response 

for 0 <  1 is 

M( 

Bandwidth 

M( 
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The comparison of        and  plots is shown below. It shows that for 0 <       1/  , the two performance 

indices are correlated as both are functions of the system damping factor  only. It means that a system 

with a given value of  of its frequency response, must exhibit a corresponding value of  if subjected to 

a step input. For       1/  , the resonant peak does not exist and the correlation breaks down.Similarly, 

the expression for damped natural frequency for a second order system is given as 

 

Thus, there exists definite correlation between of the frequency response and damped frequency of 

oscillation of the step response. 
 

 
 

 

 

 
 
 

 

It is further observed that the bandwidth, a frequency domain concept, is indicative of the un‐damped natural 

frequency of a system for a given    , and therefore indicative of the speed of response , a time‐domain 
concept. 

 
Commonly used frequency response analysis Methods: 

 

Commonly used frequency response analysis Methods are: 
• Bode plot 

• Nyquist plot 
• Nichols chart 

 



11 
 

 

            Bode plot consists of two simultaneous graphs: 
 

• Magnitude in dB [(20 log |G(jω)|)(Base 10)] vs. frequency (in log ω) 
 

• Phase (in degrees) vs. frequency (in log ω) 

In the logarithmic representation, the curves are drawn on semilog paper, using the log scale for frequency 

and the linear scale for either magnitude (in Decibels) or phase angle (in degrees). 

Advantages of Bode Plot: 

 Multiplication of Magnitudes can be converted into addition

 A simple method of sketching Bode Plot is based on asymptotic approximations. Such information 

on straight line asymptotes is sufficient if only rough information on frequency‐ response 

characteristics is needed.

 Should the exact curve be desired, corrections can be made easily to these basic asymptotic plots.

 Low frequency response contains sufficient information about the physical characteristics of most of 

the practical systems.

 Experimental determination of a transfer function is possible through Bode plot analysis.

 
Bode Diagrams 

 
In Bode diagrams, frequency ratios are expressed in terms of: 

• Octave: it is a frequency band from ω1 to 2ω1. 

• Decade: it is a frequency band from ω1 to 10ω1, where ω1 is any frequency value. 
The basic factors which occur frequently in an arbitrary transfer function are: 

 

• Gain K 

• Integral and derivatives: ( jω)±1 

• First order factors: (1 + jωT ) ±1 , T = 1a 

• Quadratic Factors:  
 
 

Bode Diagrams 

 
 For Constant Gain K, log‐magnitude curve is a horizontal straight line at the magnitude of (20 log K) dB 

and phase angle is 0 deg.

 Varying the gain K, raises or lowers the log‐magnitude curve of the transfer function by the
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corresponding constant amount, but has no effect on the phase curve 

 Logarithmic representation of the frequency‐response curve of factor ( j (ω / a) +1) can be 

approximated by two straight‐line asymptotes

 Frequency at which the two asymptotes meet is called the corner frequency or break frequency.

 

The Gain K: 

Magnitude Response: 

Log Magnitude = 20 log K 

As a number increases by a factor of 10, the corresponding value increases by a factor of 20. This may be 

seen from the following: 

 

 

Again, when expressed in decibels, the reciprocal of a number differs from its value only in sign, i.e., for the 

number K, 

 

Integral and Derivative Factors 

Log Magnitude Plot: 

Log Magnitude of  is 

Phase Plot: 

The phase angle of  is constant and equal to ‐90. 

If the log magnitude  is plotted on a logarithmic, scale, it is a straight line. To draw this straight 

line, we need to locate one point (0 dB,   on it. Since 

The slope of the line is ‐20 dB/decade or ‐6 dB/octave. 

 
Similarly, 

Log Magnitude of   is 

The phase angle of  is constant and equal to 90. 

It can be seen that the differences in the frequency responses of  and lie in the slopes of the log‐ 

magnitude curves and in the signs of the phase angles. 
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If the transfer function contains the factor or , the log magnitude becomes respectively, 

20 log     or 

20 log  
 
 

The slopes of the log‐magnitude curve for the factors and  are thus ‐20 dB/decade and 20 
 

dB  /decade  respectively. The  phase angle of is equal to ‐90 over the entire frequency range, 

where as that of  is 90 over the entire frequency range. The magnitude curve will pass through the 

point (0 dB,  

 

First‐Order Factors 

 
Log‐Magnitude Curve: 

The log magnitude of the first order factor  is 20 log = ‐20 log dB 

For low frequencies, such that , the log magnitude may be approximated by 

‐20 log  = ‐20 log 1=0 dB. 

Thus, the log magnitude curve at low frequencies is the constant 0‐dB line. For high frequencies,  such    

that , ‐20 log ‐20 log = ‐20 log ‐20 log dB. 

At , the log magnitude equals 0 dB; at , the log magnitude is ‐20 dB. Thus, the value of ‐20 log 

decreases by 20 dB for every decade of      . For , the log‐magnitude curve is thus a straight line 

with a slope of ‐20 dB/ decade (or ‐6 dB/octave). 

Our analysis shows that the logarithmic  representation of  the  frequency‐response  curve  for  the  factor 

1/   can be approximated by two straight‐line asymptotes, one a straight‐line at 0 dB for the 

frequency range  and the other a straight line with slope ‐20 dB/decade for the frequency range 

 
The frequencies at which the two asymptotes meet is called the Corner Frequency or the Break Frequency. 

For the factor ,    is the corner frequency. The corner frequency thus divides the frequency‐ 

response curve into two regions: The low frequency region and the high frequency region. 

: 
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Phase Plot: 

The exact phase angle of the factor 1/  is  

At zero frequency, the phase angle is 0. At the corner frequency, the phase angle is 
 

At infinite frequency, the phase angle becomes ‐90. Since the phase angle is given by an inverse tangent 

function, it is skew‐symmetric about the inflection point at  . 

Error in the Magnitude curve: 

The error in the Magnitude curve caused by the use of asymptotes can be calculated. 

Error at a particular frequency = Actual value – Approximate value of the log‐magnitude curve at that 

frequency 

The maximum error occurs at the corner frequency 

Actual value = ‐20 log  

Approximate value = ‐20 log 1=0 dB. 

Thus, error at corner frequency = ‐3 dB. 

The error at one octave below the corner frequency, i.e., at  is 
 

The error at one octave above the corner frequency, i.e., at   is 

‐20 log  

Thus, the error at one octave avove or below the corner frequency is approximately ‐1 dB. 

 
 

The transfer function  has the characteristics of a low‐pass filter. For frequencies above , the 

log‐magnitude falls of rapidly towards ‐ . 
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Quadratic Factors : 

When there are complex conjugate zeroes, the prototype 2nd order systems will have the transfer function 

  ,  

When there are complex conjugate poles, the prototype 2nd order systems will have the transfer function 
 
 

,  

For the complex conjugate poles, 
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Log Magnitude Curve : 

 

Log magnitude= 

For low frequencies, i.e.,   , 

Log magnitude becomes ‐20 log 1= 0 dB 

The low frequencies asymptote is thus a horizontal line at 0 dB. 

For high frequencies i.e.,  , 

Log magnitude becomes ‐20 log = ‐40 log  dB = ‐40 – 40 log  dB. 

The high frequency asymptote is thus a straight line having the slope ‐40 dB/ decade. 

The high frequency asymptote intersects the low‐frequency one at , the corner frequency. 
 

 
The two asymptotes derived are independent of  . The resonant peak occurs near the frequency 

The damping ration   determines the magnitude of this resonant peak. The magnitude of errors caused by 

the straight line asymptotes depend on the value of It is large for small values of  

Phase Plot: 

The phase angle of the quadratic factor  is 
 

The phase angle is a function of both   and . 
 

 

,  

The phase angle curve is skew‐symmetric about the inflection point where  . 

The frequency response for the factor 

 

Can be obtained by merely reversing the sign of the log magnitude and that of the phase angle for the 

factor 
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Relationship between System Type and Log‐Magnitude Curve: 
 

For a unity feedback system the static position, velocity and acceleration error constants describe the low‐ 

frequency behavior of type 0, type 1, and type 2 systems respectively. For a given system, only one of the 

static error constants is finite and significant. (The larger the value of the finite static error constant, the 

higher the loop gain is as approaches zero.) 

The type of the system determines the slope of the log‐magnitude curve at low frequencies. Thus, 

information concerning the existence and magnitude of the steady‐state error of a control system to a 

given input can be determined from the observation of the low‐frequency region of the log‐magnitude 

curve. 

Determination of Static Error constants: 
 

Assume that the open loop transfer function of a unity feedback system is given by 
 

Or 
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Static Position Error constant: 
 

The figure shown below shows an example of the log‐magnitude plot of a type 0 system. In such a system, 

the magnitude of  equals   at low frequencies, or 
 

 
dB 

 

 

20 log Kp 

 
 
 

 
0 

 
 
 
 
 
 
 
 
 

Static Velocity Error constant: 
 

The figure given below shows an example of the log‐magnitude of a type 1 unity feedback system. The 

intersection of the initial ‐20 dB/decade segment (or its extension) with the line   has the magnitude 

20 log . This may be seen as follows. 

 

 

In a type‐1 system, 
 

Thus, 

-20 dB/decade 

-40 dB/decade 

In log scale 
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The intersection of the initial ‐20 dB/decade segment (or its extension) with the 0‐dB line has a frequency 

numerically equal to , i.e., if the frequency at this intersection is , then 

  or, 
 

Static Acceleration Error constant: 
 

The figure given below shows an example of the log‐magnitude of a type 2 unity feedback system. The 

intersection of the initial ‐40 dB/decade segment (or its extension) with the line has the magnitude 

20 log  . This may be seen as follows. 

 

 

Since at low frequencies, 
 

It follows that 
 

The frequency at the intersection of the initial ‐40 dB/decade segment (or its extension) with the 0‐dB 

line gives the square root of  numerically. This can be seen from the following. 
 

 

Which yields  
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Phase Margin (PM): 
 

Phase margin is that amount of additional phase lag at the gain crossover frequency required to bring the 

system to the verge of instability. 

Gain Crossover Frequency: 
 

Gain crossover frequency is that frequency at which, , the magnitude of the open loop transfer 

function is unity. 

The  Phase  margin  PM  is  180 plus  the phase angle of the open loop transfer function at the gain 

crossover frequency. 
 

Gain Margin (PM): 
 

Gain Margin is the reciprocal of the magnitude  at the Phase crossover frequency. 

Phase Crossover Frequency: 

Phase crossover frequency is that frequency at which,  , the phase angle of the open loop transfer 

function equals ‐180. 

Thus, Gain Margin, 
 

 

In terms of decibels, 
 

 

A Few Comments on Phase and Gain Margins: 
 

 For a stable non‐minimum phase system, the gain margin indicates how much the gain can be 

increased before the system becomes unstable. For an unstable system, the gain margin indicates 

how much the gain can be decreased before the system becomes stable. 

 The Gain Margin of a first and Second order system is infinite since the polar plot of such systems 

does not cross the real axis. Thus, theoretically, the 1st and 2nd order systems cannot be unstable. 

 It is important to point out that conditionally stable systems will have two or more phase crossover 

frequencies and some higher order systems with complicated numerator dynamics may also have 

two or more gain crossover frequencies. For stable systems having two or more gain crossover 

frequencies, the Phase Margin is measured at the highest Gain Cross‐over Frequency. 

 Either the Gain Margin alone or the Phase Margin alone does not give a sufficient indication of the 

relative stability. Both should be given for determination of stability. 
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 For satisfactory performance, PM should be between 30 and 60 and the GM should be greater 

than 6 dB. 

 The requirement that the PM be between 30 and 60 means that in Bode diagram, the slope of the 

log‐magnitude curve at the gain crossover frequency should be more gradual than ‐40 dB/ decade. 

In most practical cases, a slope of ‐20 dB/decade is desirable. If the slope at the gain crossover 

frequency is ‐60 dB/ decade or steeper, the system is most likely unstable. 

PHASE AND GAIN MARGIN THROUGH BODE PLOTS: 
 



22 
 

 
 

 
 

A sinusoidal transfer function  is a complex function and is given by 
 

Or,  
 

It is seen that   can be represented as a phasor of magnitude M and phase angle (Measured positively 

in counter‐clockwise direction). As the input frequency     is varied from 0 to      , the magnitude  M and the  

phase  angle       change and hence the tip of  the  phasor    traces a locus in the complex plane. The 

locus thus obtained is known as ‘Polar Plot’ as shown below. 
 

 

Procedure for Sketching of the Polar Plot: 
 

To sketch the Polar Plot of of a given Open Loop Transfer Function over the entire frequency range, 
 

 Express the given expression for the OLTF in (1+sT) form. 

 Substitute in the expression for  and get  

 Find out the expressions for  and . 

 Tabulate various values of magnitude and phase angle for different values of starting from 0 to 

. 

 There are usually four key points to be known. 

(a) The starting of the plot where  

(b) The end of the plot where 

(c) The point where the Polar plot crosses the real axis, i.e.,  

(d) The point where the Polar plot crosses the imaginary axis, i.e., 
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 Fix all points in a polar graph sheet and join the points. (Polar graph sheet has concentric circles and 
radial lines. The concentric circles represent the magnitude and the radial lines represent the phase 
angles. In polar sheet, + ve phase angle is measured in ACW from 00 and ‐ve phase angle is measured in 
CW from 00 

 

Examples: 
 

Polar Plot of : 

Consider a 1st order system with transfer function  
 

The sinusoidal transfer function is 
 

 

 

When   and  Therefore, the phasor at has unit length and lies along the positive 

real axis. As       increases, M decreases and phase angle increases negatively. When  ,  and 

  As , M becomes zero and   is ‐90   This is represented by a phasor of zero length   

directed along the  ‐90     axis in the  complex plane. In fact, the  locus of    can be shown to be a 

semicircle. 
 

Im 

- 

270º 

 
 
 
 

-180º 

 
1 

 
45º 

 
 
 

1/ 
increasing 

 
 
 
 
 

-90º 

 
 

Polar Plot of : 

Consider now the transfer function 

 

Polar Plot of 1/ (1+j T) 
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This transfer function may be rearranged as 
 

 

 

The general shape of this transfer function is shown below. The plot is asymptotic to the vertical line 

passing through the point (‐T, 0). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Polar Plot of 
 

The low and high frequency regions of the polar plot of the following sinusoidal transfer function 
 

are given respectively by 
 

                             and  

The Polar plot of this sinusoidal transfer function starts at and ends at as increases 

from zero to infinity. Thus, the high frequency portion of  is a tangent to the negative real axis. 

: 
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The exact shape of a polar plot depends on the value of the damping ratio Thus the general shape is 

same for both overdamped and underdamped case. 
 

For  the  under‐damped case, at , we have , and the phase angle at is ‐90. 

Therefore, it can be seen that the frequency at which the  locus intersects the imaginary axis is the 

undamped natural frequency . The peak value of   is obtained as the ratio of magnitude of the 

vector at the resonant frequency  to the magnitude of the vector at 

 

For the over‐damped case, as       increases well beyond unity, the    locus approaches a semi‐circle.. 

This may be seen from the fact that, for a heavily damped system, the characteristic roots are real, and one 

is much smaller than the other. Since, for sufficiently large   , the effect of the larger root (larger in 

absolute value) on the response becomes very small, the system behaves like a 1st order one. 
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Re 

 
 
 

Example: 
 

Obtain the Polar Plot of the following transfer function: 
 

 

Since can be written as  
 

The magnitude and phase angle are respectively 
 

And 
 

 

 
Since the magnitude decreases from unity monotonically, and the phase angle also decreases 

monotonically, and indefinitely, the polar plot of the given transfer function is a spiral, as shown in the 

above figure. 

General Nature of Nyquist Plots: 
 

The polar plots of a transfer function of the form 
 

 

Where, or the degree of the denominator polynomial is greater than that of the numerator will 

have the following shapes. 
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General shapes of the polar plots of some important functions 
 

The general shapes of the polar plots of some important functions are shown below. From the figures, 

following observations are made. 

Addition of a non‐zero pole to a transfer function results in further rotation of the polar plot through an 

angle of as 

 Addition of a pole at the origin to the transfer function rotates the polar plot at zero and infinite 

frequencies by a further angle of . 

 The effect of addition of a zero to the transfer function is to rotate the high frequency portion of the 

polar plot by in the counter‐clockwise direction. 

 If degree of the denominator polynomial is greater than that of the numerator, the  loci will 

converge to the origin clockwise. 

 Any complicated shape of the polar plot curves are caused by the numerator dynamics, which is by 

the time constants in the numerator of the transfer function. 
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CHAPTER 5, NYQUIST PLOT 
 

 

Stability in frequency domain: 
 

A stability test for time invariant linear systems can also be derived in the frequency domain. It is known as 

Nyquist stability criterion. 

It is based on the complex analysis result known as Cauchy’s principle of argument. Note that the system 

transfer function is a complex function. By applying Cauchy’s principle of argument to the open‐loop system 

transfer function, we will get information about stability of the closed‐loop system transfer function and 

arrive at the Nyquist stability criterion (Nyquist, 1932). 

The importance of Nyquist stability lies in the fact that it can also be used to determine the relative degree 

of system stability by producing the so‐called phase and gain stability margins. These stability margins are 

needed for frequency domain controller design techniques. 

We present Only the Essence of the Nyquist stability Criterion and Define the Phase and Gain stability 
margins. The Nyquist Method is used for studying the stability of linear Systems with Pure time delay. 

For a SISO feedback System the closed‐loop transfer function is given by: 
 

 

where represents the system and  is the feedback element. 
Since the system poles are determined as those values at which its transfer function becomes infinity, it 
follows that the closed‐loop system poles are obtained by solving the following equation 

which, in fact, represents the System characteristic equation. 

In the following we consider the complex function 

Whose zeros are the closed‐loop poles of the transfer function. In addition, it is easy to see that the poles of 

 are the  zeros of  . At the same  time  the poles of   are the open‐loop control system poles 

since they are contributed by the poles of , which can be considered as the open‐loop control 

system transfer function‐ obtained when the feedback loop is open at some point. The Nyquist stability test 

is obtained by applying the Cauchy principle of argument to the complex function . First, we state 

Cauchy’s principle of argument. 

 
Cauchy’s principle of argument 

Let  be an analytic function in a closed region of the complex plane given in Figure below except at a 

finite number of points (namely, the poles of  ). It is also assumed that  is analytic at every point on 

the contour.  Then,  as  travels  around  the  contour  in  the  plane  in  the  clockwise  direction,  the 

function   encircles the origin in the ‐plane in the same direction times (see 

Figure 4.6), with given by 
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Where and stand for the number of zeros and poles (including their multiplicities) of the function 

 inside the contour. 

The above result can be also written as 

Which justifies the terminology used, “the principle of argument”. 

 

Figure 1. Cauchy's principle of argument 
 

Nyquist Plot 

The Nyquist plot is a polar plot of the function  

When travels around the contour given in Figure below. 

 

Figure 2. Contour in S‐ plane 

 

The contour in this figure covers the whole unstable half plane of the complex plane      ,  . Since the 

function , according to Cauchy’s principle of argument, must be analytic at every point on the contour, 

the poles of  on the imaginary axis must be encircled by infinitesimally small semicircles. 

 
 

Nyquist Stability Criterion 
It states that the number of unstable closed‐loop poles is equal to the number of unstable open‐loop poles 
plus the number of encirclements of the origin of the Nyquist plot of the complex function. 
This can be easily justified by applying Cauchy’s principle of argument to the function with the ‐plane 
contour given in Figure 2. Note that and represent the numbers of zeros and poles, respectively, of in the 
unstable part of the complex plane. At the same time, the zeros of are the closed‐loop system poles, and 
the poles of are the open‐loop system poles (closed‐loop zeros). 
The above criterion can be slightly simplified if instead of plotting the function, we plot only the function 
and count encirclement of the Nyquist plot of around the point, so that the modified Nyquist criterion has 
the following form. 
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Stability via the Nyquist Diagram 
We now use the Nyquist diagram to determine a system's stability, using the simple equation. The values of 
P, the number of open‐loop poles of G(s)H(s) enclosed by the contour, and N, the number of encirclements 
the Nyquist diagram makes about — 1, are used to determine Z, the number of right‐half‐plane poles of the 
closed‐loop system. 
If the closed‐loop system has a variable gain in the loop, one question we would like to ask is, "For what 
range of gain is the system stable?" The general approach is to set the loop gain equal to unity and draw  
the Nyquist diagram. Since gain is simply a multiplying factor, the effect of the gain is to multiply the 
resultant by a constant anywhere along the Nyquist diagram. 

 

 

Figure 3. Nyquist stability contour and diagram 
 

As the gain is varied, we can visualize the Nyquist diagram is expanding (increased gain) or shrinking 
(decreased gain) like a balloon. This motion could move the Nyquist diagram past the —1 point, changing 
the stability picture. For this system, since P = 2, the critical point must be encircled by the Nyquist diagram 
to yield N = 2 and a stable system. A reduction in gain would place the critical point outside the Nyquist 
diagram where N = 0, yielding Z = 2, an unstable system. 

If the Nyquist diagram intersects the real axis at —1, then  . From root locus concepts, when 
G(s)H(s) = —1, the variable s is a closed‐loop pole of the system. Thus, the frequency at which the Nyquist 
diagram intersects —1 is the same frequency at which the root locus crosses the /co‐axis. Hence, the 
system is marginally stable if the Nyquist diagram intersects the real axis at —1. 
In summary, then, if the open‐loop system contains a variable gain, K, set K = 1 and sketch the Nyquist 
diagram. Consider the critical point to be at ‐1/K rather than at ‐ 1 . Adjust the value of K to yield stability, 
based upon the Nyquist criterion. 
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At , 

 
 

 

PROBLEM: For the unity feedback system, where G(s) = K/[s(s + 3)( s + 5)], find the range of gain, K, for 
stability, instability, and the value of gain for marginal stability. For marginal stability also find the frequency 
of oscillation. Use the Nyquist criterion. 

 

SOLUTION: First set K = 1 and sketch the Nyquist diagram for the system – 
 

Figure 4. Nyquist conture and stability diagram 
 

For all points on the imaginary axis, 
 

Next find the point where the Nyquist diagram intersects the negative real axis. Setting the imaginary part 

of Eq. (1) equal to zero, we find . 

Substituting   this  value   of        back   into  Eq.  (1)   yields  the  real   part  of   ‐0.0083.  Finally,  at , 

 
From the contour of Figure, P = 0; for stability N must then be equal to zero. From Figure, the system is 
stable if the critical point lies outside the contour (N = 0), so that Z = P — N = 0. Thus, K can be increased by 
1/0.0083 = 120.5 before the Nyquist diagram encircles — 1. 
Hence, for stability, K < 120.5. For marginal stability K = 120.5. At this gain the Nyquist diagram intersects — 

1, and the frequency of oscillation is   rad/s 
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Stability via Mapping Only the Positive Axis 
Once the stability of a system is determined by the Nyquist criterion, continued evaluation of the system 

can be simplified by using just the mapping of the positive   ‐axis. 

 

Figure 5. Contour and root locus of system that is stable for small gain and unstable for large gain 
 

Consider the system shown in above Figure, which is stable at low values of gain and unstable at high values 
of gain. Since the contour does not encircle open‐loop poles, the Nyquist criterion tells us that we must 
have no encirclements of —1 for the system to be stable. We can see from the Nyquist diagram that the 
encirclements of the critical point can be determined from the mapping of the positive   ‐axis alone. If 
the gain is small, the mapping will pass to the right of —1, and the system will be stable. If the gain is high, 
the mapping will pass to the left of —1, and the system will be unstable. Thus, this system is stable for the 
range of loop gain, K, that ensures that the open‐loop magnitude is less than unity at that frequency where 
the phase angle is 180° (or, equivalently, —180°). This statement is thus an alternative to the Nyquist 
criterion for this system. 

 
 
 

Figure 6. Contour and root locus of system that is unstable for small gain and stable for large gain 
 

Now consider the system shown in above Figure, which is unstable at low values of gain and stable at high 
values of gain. Since the contour encloses two open‐loop poles, two counter clockwise encirclements of the 
critical point are required for stability. Thus, for this case the system is stable if the open‐loop magnitude is 
greater than unity at that frequency where the phase angle is 180° (or, equivalently, —180°). 
In summary, first determine stability from the Nyquist criterion and the Nyquist diagram. Next interpret the  
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Nyquist criterion and determine whether the mapping of just the positive imaginary axis should have a gain 

of less than or greater than unity at 180°. If the Nyquist diagram crosses ±180° at multiple frequencies, 
determine the interpretation from the Nyquist criterion. 

 

PROBLEM: Find the range of gain for stability and instability, and the gain for marginal stability, for the 
unity feedback system, where G(s) = K/[(s2 + 2s + 2)(s + 2)]. For marginal stability find the radian frequency 
of oscillation. Use the Nyquist criterion and the mapping of only the positive imaginary axis. 

 

SOLUTION: Since the open‐loop poles are only in the left‐half‐plane, the Nyquist criterion tells us that we 
want no encirclements of ‐ 1 for stability. Hence, a gain less than unity at ±180° is required. Begin by letting 
K = 1 and draw the portion of the contour along the positive imaginary axis as shown in Figure. 

 

Figure 7. Nyquist diagram of Mapping of positive imaginary axis 
 

In Figure, the intersection with the negative real axis is found by letting 5 = jco in G(s)H(s), setting the 
imaginary part equal to zero to find the frequency, and then substituting the frequency into the real part of 
G(jco)H{jco). Thus, for any point on the positive imaginary axis, 

 
 

Setting the imaginary part equal to zero, we find   . Substituting this value back into equation yields 

the real part,  
This closed‐loop system is stable if the magnitude of the frequency response is less than unity at 180°. 

Hence, the system is stable for K < 20, unstable for K > 20, and marginally stable for K = 20. When the 

system is marginally stable, the radian frequency of oscillation is . 

 

 
Example:1 
Consider the following transfer function 

 

 

Putting the value of in above equation, we obtain 
 

 

The magnitude and phase angle equations: 
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Evaluating magnitude and phase response at   and 

At  

 

 
At  

 

 

 
PHASE AND GAIN MARGIN THROUGH NYQUIST PLOTS: 
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The closed‐loop frequency response is the locus of the closed‐loop magnitude frequency response for unity 
feedback system. If the frequency response of an open loop system is plotted in polar coordinates, and 
superimposed on the top of M‐circles, then the closed‐loop magnitude frequency response is determined by 
each intersection of this polar plot with the constant M‐circles. 
 

M‐circles are contours of constant closed‐loop magnitude on Nyquist plane. 

Let . Then . Hence, 

Then two cases are possible: 
 
 

 

, so we get: 
 
 
 
 
 
 

 

Constant  M‐circles  are  the  circles  in  the  complex  plane  with  radius  centered at 
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Figure 8. Constant M circles 

 
 

Constant N‐circles 

 
Therefore 

 
 

For a constant value of is also constant. 
Rearranging the equation we get, 

 

constant N‐circles are the circles in the complex plane with radius  centered at (−1/2, 1/2N) (see 
figure 2). Constant N‐circles are the locus of the closed‐loop phase frequency response. Similarly to M‐ 
circles, if the frequency response of an open loop system is plotted in polar coordinates, and superimposed 
on the top of N‐circles, then the closed‐loop phase frequency response is determined by each intersection 
of this polar plot with the constant N‐circles. All the constant N‐circles pass through the origin and (‐1+j0) 
point regardless of the value of N. 
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Figure 9. Constant N circles 

 
 
 
 
 
 
 
 
 
 

Example 1- Closed-loop frequency response from open-loop frequency response 

Find the closed‐loop frequency response of the unity feedback system with open‐loop transfer function 

 
using the open‐loop polar frequency response curve, constant M‐circles, and constant N‐circles. 

Solution 
Open‐loop frequency response is 

 

 

M‐ and N‐circles in figure 3. Polar plot of is shown superimposed over the 
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Figure 10. Constant N and M circles 
 

The closed‐loop magnitude frequency response can be obtained by finding the intersection of each point of 

the   with the M‐circles, and the closed‐loop phase frequency response can be obtained by finding 

the intersection of each point of the  with the N‐circles. 
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Figure 11. Closed loop frequency response 
 
 
 

 

Nichols Charts 
Since it is easier to construct a bode plot than a polar plot, it is preferable to have constant‐M and constant‐ 

contours constructed on logarithmic gain and phase coordinates. N.B. Nichols transformed the constant‐ 

M and constant‐   contours constructed on logarithmic gain and phase coordinate and the resulting chart    

is known as the Nichols chart. It displays magnitude response in decibels, so that changes in gain are as 
simple to handle as in the Bode plot. Nichols chart is a plot of open‐loop magnitude in dB vs. open‐loop 
phase. Every point on the constant M‐ and N‐circles is transferred to the Nichols chart (see figure 4). The 

intersection of the   with the Nichols chart yields the frequency response of the closed‐loop system. 
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Example 2‐ Closed‐loop frequency response from open‐loop frequency response using Nichols chart 
Consider a unity feedback system with the following open‐loop transfer function 

 
Find the closed‐loop frequency response using Nichols chart. 

 
Solution 
Superimposing the open‐loop frequency response for K = 1 on the Nichols chart, we obtain the plot shown 
in figure 5. 

 

Figure 5: Nichols chart for Example 2 

 
The intersection of the plot of with the Nichols chart yields the frequency response of the closed‐loop 
system 
If the gain is increased by 10 dB, one should simply raise the curve for K = 1 by 10 dB to obtain the curve for 
K = 3.16 (10 dB) (see figure 5). 
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THE END 
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